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’ INTRODUCTION

Arginase is a ubiquitous manganese metalloenzyme that cata-
lyzes the hydrolysis of L-arginine to form L-ornithine and urea. In
mammals, two isozymes have been identified with distinct tissue
distributions and subcellular localizations.1�5 Arginase I is a
cytosolic enzyme found predominantly in the liver, and arginase
II is a mitochondrial enzyme found at highest concentrations in
the kidney.6�9 However, both isozymes are constitutively ex-
pressed or induced in other tissues to regulate cationic amino acid
homeostasis in three critical metabolic pathways: (1) the regula-
tion of L-arginine levels for nitric oxide (NO) biosynthesis;10�15

(2) the regulation of L-ornithine levels for L-proline biosynthesis
to promote collagen production;16,17 (3) the regulation of
L-ornithine levels for polyamine biosynthesis to facilitate cellular
proliferation.2,18�20

Significantly, expression of arginase I and/or arginase II is up-
regulated in certain diseased tissues and cell types. For example,
given that arginase competes with NO synthase for their common
substrate L-arginine, aberrant arginase II activity in the penile
corpus cavernosum of the diabetic male attenuates NO biosynth-
esis and therefore compromises the NO-dependent relaxation of
cavernosal smooth muscle required for penile erection.21 More-
over, arginase I levels in the corpus cavernosum increase with age
and similarly compromise penile erection.22 Thus, erectile dys-
function can result from the up-regulation of either arginase I or
arginase II in different etiologies of the same disease. In another
example, arginase I is up-regulated in the asthmatic lung by Th2

cytokines such as interleukin-13,23�27 and arginase I and arginase
II single-nucleotide polymorphisms are identified in atopic
asthma.28,29 Arginase activity contributes to asthma pathology
through three metabolic functions:30�32 (1) arginase compro-
mises NO-dependent relaxation of airway smoothmuscle, leading
to bronchoconstriction; (2) arginase enhances L-proline and
collagen biosynthesis, leading to the accumulation of fibrotic
tissue in the chronic asthmatic airway; (3) arginase enhances
polyamine biosynthesis, which stimulates cellular proliferation
and hyperplasia, e.g., of airway smooth muscle cells, in the
asthmatic airway. These disease manifestations can be blocked
by the use of arginase inhibitors in ex vivo and in vivo ex-
periments.15,21,22,33�35 Thus, the arginase isozymes are increas-
ingly considered as vital pharmaceutical targets for the treatment
of erectile dysfunction, asthma, and cardiovascular diseases linked
to aberrant arginase activity, such as atherosclerosis.36

The first high-affinity inhibitor of arginase to be reported was
the boronic acid analogue of L-arginine, 2-(S)-amino-6-borono-
hexanoic acid (ABH, Figure 1),37 which binds to human arginase
I (HAI) with Kd = 5 nM and human arginase II with Ki = 8.5
nM.38,39 ABH is also the most potent inhibitor known for
Plasmodium falciparum arginase (PFA), to which it binds more
weakly with Kd = 11 μM.40 The X-ray crystal structures of HAI
and rat arginase I complexed with ABH,15,38 as well as the
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structure of the PFA�ABH complex,40 reveal that the boronic
acid side chain undergoes nucleophilic attack by the metal-
bridging hydroxide ion observed in the unliganded enzyme41,42

to yield a tetrahedral boronate anion that mimics the tetrahedral
intermediate and its flanking transition states in catalysis. The
binding of the ABH analogue S-(2-boronoethyl)-L-cysteine
(BEC, Figure 1) to HAI and human arginase II occurs through
an identical mechanism.33,38

Structural comparisons of arginase�ABH and �BEC com-
plexes reveal a conserved hydrogen bond network responsible for
the molecular recognition of the inhibitor R-amino and R-
carboxylate groups; these interactions contribute significantly
to enzyme�inhibitor affinity, as demonstrated in recent muta-
genesis studies with rat arginase I.43 Given that ABH analogues in
which the side chain is modified exhibit radically diminished
affinity,37,44,45 there is only one remaining possibility for the
derivatization of the ABH scaffold to yield new inhibitors: the
amino acidCR-H atom, which in the enzyme�inhibitor complex
is solvent exposed and oriented toward a region of the protein
surface that is currently “uncharted” with regard to inhibitor
binding. The design and synthesis of R,R-disubstituted amino
acids based on the high-affinity ABH scaffold (Figure 1)may thus
enable the generation and development of a new class of arginase
inhibitors to expedite the search for new arginase-directed
therapies. Notably, such therapies may target indications beyond
those outlined above. For instance, the inhibition of PFA has
been recently proposed as a potential adjuvant therapy for
accelerating the recovery of malaria patients.40,46

We now report the first study of the binding of R,R-disubsti-
tuted amino acids to arginase. We demonstrate initial proof-of-
principle with the X-ray crystal structures of HAI complexed with
2-(difluoromethyl)-L-ornithine (DFMO) and L-ornithine to
show that an additional R-substituent does not perturb the
intermolecular interactions of the amino acid product of the
arginase reaction. We then describe the design, synthesis, and
assay of two newR,R-disubstituted derivatives of ABH: 2-amino-
6-borono-2-methylhexanoic acid (MABH) and 2-amino-6-bor-
ono-2-(difluoromethyl)hexanoic acid (FABH) (Figure 1). X-ray
crystal structures of their complexes with HAI and PFA, together
with in vitro evaluations of inhibitory potency, illuminate new

avenues toward the development of R,R-disubstituted amino
acids as arginase inhibitors.

’RESULTS

HAI�DFMO Complex. While DFMO is reported47 to be a
weak inhibitor of arginase activity in human colon carcinoma
cells with Ki = 3.9 mM, and while racemic DFMO was used in
crystal soaking experiments with HAI, the omit map in Figure 2a
clearly shows that the L-stereoisoimer of DFMO is bound
exclusively with full occupancy. This reflects the stereoselectivity
of the HAI active site for the binding of L-amino acids; e.g.,
L-arginine is a substrate for arginase, whereas D-arginine is not.48

Inhibitor binding does not cause any significant conformational
changes in the active site or elsewhere in the protein structure,
and the rms deviation is 0.26 Å for 314 CR atoms in comparison
with the unliganded enzyme. As for DFMO, the catalytic product
L-ornithine binds in the HAI active site without causing any
significant conformational changes. The rms deviation is 0.22 Å
for 314 CR atoms in comparison with the unliganded enzyme.
An omit map showing the binding of L-ornithine is found in
Figure 2b. Comparison of the two complexes reveals a generally
similar binding mode for DFMO and L-ornithine (Figure 2c).
Direct and water-mediated hydrogen bonds with the R-amino
and R-carboxylate groups are identical in each complex. These
interactions are crucial affinity determinants,43 and R,R-disub-
stitution clearly does not perturb them.
Chemistry. Since the active site of HAI readily accommodated

the additional R-substituent of DFMO without perturbing the
binding interactions or conformation observed for L-ornithine, we
synthesized the correspondingR,R-disubstituted derivatives of the
archetype HAI inhibitor, ABH (MABH and FABH; see Figure 1).
As shown in Scheme 1, the key intermediate in the syntheses of
MABH and FABHwas ethyl 2-N-(diphenylmethyleneamino)hex-
5-enoate (2). While this compound was previously reported,49 we
developed an alternative synthetic pathway with a comparable
overall yield. We synthesized 2 from the commercially available
N-(diphenylmethylene)glycine ethyl ester (1), using the classic
mild deprotonation with potassium tert-butoxide (tBuOK),50,51

followed by alkylation with 4-bromo-1-butene. The use of benzo-
phenone imines of glycine alkyl esters as precursors of R-amino
acids is a well-known52 synthetic strategy to ensure selective
monoalkylation of the amino acid CR atom. We employed the
same mild base (tBuOK) to further deprotonate the CR in the
resulting derivative 2. Subsequent one-pot reaction with methyl
iodide and chlorodifluoromethane53 respectively yielded the cor-
respondingmethyl (3) and difluoromethyl (4) derivatives in good
yields as new compounds (Scheme 1). Hydroboration with
pinacolborane catalyzed by complexes of cyclooctadiene iridium
chloride dimer, [Ir(cod)Cl]2, with 1,1-bis(diphenylphosphino)-
methane (dppm)54 introduced the synthetic equivalent of the
boronic synthon in the terminal olefins 3 and 4, correspondingly
generating the intermediates 5 and 6. Complete deprotection of
derivatives 5 and 6 with 6 NHCl in tetrahydrofuran (THF) led to
the targeted compounds MABH (7) and FABH (8), respectively.
Binding Affinities of MABH and FABH. Dissociation con-

stants for the S-isomer of ABH and racemic MABH and FABH
against HAI determined by surface plasmon resonance (Figure 3)
and inhibition constants against PFA determined by kinetic assay
are recorded in Table 1. Curiously, both R,R-disubstituted
derivatives of ABH exhibit weaker affinity compared with ABH.
For HAI, MABH and FABH bind 49-fold and 1889-fold less

Figure 1. The amino acid substrate and product of the reaction
catalyzed by arginase, L-arginine and L-ornithine respectively, are com-
pared with DFMO and the boronic acid inhibitors BEC, ABH, MABH,
and FABH.
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tightly, respectively; for PFA, MABH and FABH exhibit inhibi-
tory potencies based on Ki that are 26-fold and 200-fold weaker
than that observed for ABH. The structural basis for affinity loss is
not immediately evident for the binding of R,R-disubstituted
amino acids toHAI based on crystal structures of enzyme�inhibi-
tor complexes; however, that only the L-stereoisomer of each
inhibitor binds indicates that the affinity losses are only one-half
those measured for the racemic mixture (vide infra). Even so, it is
quite possible that affinity can be recaptured and enhanced with
longer R-substituents capable of making favorable interactions in
the active site. In contrast with HAI�inhibitor complexes, crystal
structures of PFA�inhibitor complexes reveal intersubunit inter-
actions with the R-substituents of MABH and FABH.
Crystal Structures of HAI�MABH and HAI�FABH Com-

plexes. The 1.60 Å resolution crystal structure of the
HAI�MABH complex reveals that inhibitor binding does not
cause any significant conformational changes in the active site or
elsewhere in the protein structure. The rms deviation is 0.24 Å for
313 CR atoms in comparison with the HAI�ABH complex. The

electron density of MABH is well-defined and clearly indicates
that the L-stereoisomer of racemic MABH used in cocrystalliza-
tion experiments is exclusively selected for binding in the HAI
active site (Figure 4a). Superposition with the 1.29 Å resolution
crystal structure of human arginase I�ABH complex shows
excellent overlap (Figure 4c), and enzyme�inhibitor hydrogen
bonds are identical in both complexes.
The 1.7 Å resolution electron density map of the HAI�FABH

complex similarly reveals the exclusive binding of the L-stereo-
isomer of racemic FABH used in cocrystallization experiments
(Figure 4b). Inhibitor binding does not cause any significant
overall conformational changes in the HAI structure, and the rms
deviation for 313 CR atoms is 0.29 Å when compared with the
structure of the HAI�ABH complex. However, each fluorine
atom of the R-difluoromethyl group accepts hydrogen bonds
from solvent molecules, which in turn donate hydrogen bonds to
D183; additionally, it appears that T136 undergoes a 128�
conformational change about side chain torsion angle χ1 to
accommodate the binding of one of these solvent molecules

Figure 2. (a) Simulated annealing omit electron density map of the HAI�DFMO complex (cyan, contoured at 3.0σ), in which DFMO was omitted
from the structure factor calculation. Atoms are color-coded as follows: C = yellow, O = red, N = blue, F = black; Mn2+ ions and water molecules are
purple and red spheres, respectively. Metal coordination and hydrogen bond interactions are indicated by red and green dashed lines, respectively. (b)
Simulated annealing omit electron density map of the HAI�L-ornithine complex (cyan, contoured at 3.3σ). Atoms are color-coded as in (a). (c)
Superposition of the HAI�DFMO complex (red) and the HAI�L-ornithine complex (blue).



5435 dx.doi.org/10.1021/jm200443b |J. Med. Chem. 2011, 54, 5432–5443

Journal of Medicinal Chemistry ARTICLE

(Figure 4c). Enzyme�inhibitor hydrogen bond interactions are
otherwise identical to those observed in the HAI�ABH and
HAI�MABH complexes.
Crystal Structures of PFA�MABH and PFA�FABH Com-

plexes. The 1.9 Å resolution crystal structure of the PFA�
MABH complex and the 2.0 Å resolution crystal structure of the
PFA�FABH complex (Figure 5) each reveal the exclusive
binding of the L-stereoisomer from the racemic inhibitor mixtures
used in cocrystallization experiments. Surprisingly, however, each
inhibitor binds to PFA with an intact boronic acid side chain; i.e.,
neither inhibitor binds in the tetrahedral boronate anion form as
observed in the PFA�ABH complex40 or in the HAI�MABH or

HAI�FABH complex (Figure 4). Attempted refinement with the
tetrahedral boronic acid form of each inhibitor resulted in
negative electron density peaks on both the boron atom and
the adjacent carbon atom. Such spurious peaks are not observed
when each inhibitor is refined with an intact boronic acid moiety.
Clear electron density for each inhibitor shows that a planar
boronic acid moiety binds to preclude the binding of the metal-
bridging solvent molecule typically observed in unliganded
arginase structures.41,42 Electron density for a water molecule
coordinated to MnA

2+ is ∼2 Å from the boron atom of MABH
and FABH (e.g., see Figure 5b). Thus, MABH and FABH do not
bind as transition state analogues. Moreover, neither inhibitor

Scheme 1. Synthesis of 2-Amino-6-borono-2-methylhexanoic Acid (MABH) and 2-Amino-6-borono-2-difluoromethylhexanoic
Acid (FABH)

Figure 3. Surface plasmon resonance sensorgrams for HAI showing the binding of (a) ABH,Kd = 18( 1 nM, (b)MABH,Kd = 0.88( 0.02 μM, and (c)
FABH, Kd = 34 ( 2 μM.
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binds as a true substrate analogue, since the trigonal planar
boronic acid moiety of each inhibitor adopts a binding conforma-
tion with a Cδ�Cε�Bζ�Oη1 dihedral angle of ∼90�, which is
very different from the corresponding Cδ�Nε�Cζ�Nη1 dihe-
dral angle of 180� required by the planar guanidiniummoiety of L-
arginine. This structural aberration may contribute to the weaker
affinity of MABH and FABH compared to ABH.
Inhibitor binding to PFA generally does not cause any signifi-

cant conformational changes in the protein structure. However,
active site solvent structure is slightly different in that the binding
ofR,R-disubstituted amino acids displaces a water molecule that is
observed in the PFA�ABH complex (Figure 5d). In comparison

with the PFA�ABH complex, the rms deviations are 0.10 Å for
308 CR atoms and 0.12 Å for 308 CR atoms for the PFA�MABH
and PFA�FABH complexes, respectively. However, some local
structural changes accommodate the binding of R,R-disubstituted
amino acids. In particular, an alternative conformation with 50%
occupancy is observed for D272 in the PFA�MABH complex;
this residue hydrogen bonds with H381 in the PFA�ABH
complex. The R-methyl group of MABH is 3.0 Å from the Nε2
atom of H381, and H381 rotates ∼5� about side chain torsion
angle χ1, so this van der Waals contact may destabilize the
H381�D272 interaction. Higher thermal B factors are observed
for this portion of the inhibitor and the side chain of H381,
suggesting that there is some residual disorder in this region of the
enzyme�inhibitor complex.
Inhibitor binding conformations are very similar in PFA

complexes with MABH and FABH (Figure 5d). Interestingly,
the R-difluoromethyl group of FABH does not trigger the
conformational change of D272 as observed in the PFA�MABH
complex. H381 undergoes a slightly greater conformational
change (∼12�) than that observed in the PFA�MABH complex,
perhaps due to a hydrogen bond interaction with one of the
fluorine atoms of FABH (F 3 3 3N separation of 2.6 Å). However,
as observed in the PFA�MABH complex, higher thermal B
factors characterize this portion of the inhibitor and the side
chain of H381, suggestive of some residual disorder in this region
of the enzyme�inhibitor complex. Such residual disorder may
compromise enzyme�inhibitor affinity.

Table 1. r,r-Disubstituted Amino Acids Synthesized as In-
hibitors of Human Arginase I (HAI) and Plasmodium falcip-
arum Arginase (PFA)

inhibitor HAI, Kd (μM)a PFA, Ki (μM)b

ABH (S-isomer) 0.018 ( 0.001 10 ( 1c

MABH (racemic)d 0.88 ( 0.02 260 ( 20

FABH (racemic)d 34 ( 2 2000 ( 200
a Surface plasmon resonance. Errors are standard deviations of experi-
ments run in triplicate. bKinetic colorimetric assay. Errors are standard
deviations of experiments run in triplicate. c From ref 40. d Since only the
L-stereoisomer is observed to bind in each crystal structure, the actualKd

or Ki for the inhibitory stereoisomer is likely to be one-half that
measured for the racemic mixture.

Figure 4. (a) Simulated annealing omit electron density map of the HAI�MABH complex (cyan, contoured at 3.8σ), in which MABH was omitted
from the structure factor calculation. Atoms are color-coded as follows: C = yellow, O = red, N = blue, B = green; Mn2+ ions and water molecules are
purple and red spheres, respectively. Metal coordination and hydrogen bond interactions are indicated by red and green dashed lines, respectively. (b)
Simulated annealing omit electron density map of the HAI�FABH complex (cyan, contoured at 3.0σ), in which FABH was omitted from the structure
factor calculation. Atoms are color-coded as in (a), with F = black. (c) Superposition of the HAI�ABH complex (blue), HAI�MABH complex (red),
and HAI�FABH complex (green).
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’DISCUSSION

In the current study, we sought to determine the structural
characteristics and inhibitory properties of the most potent
arginase inhibitor known to date, ABH, when the amino acid
CR-H atom is substituted with alkyl groups. On the basis of the
structure of the HAI�DFMO complex, we selected the simplest

alkyl substituents, CH3 and CHF2, to initiate this study. As
discussed in detail in a recent review,55 the replacement of
hydrogen by fluorine is a commonly used strategy in medicinal
chemistry to increase the lipophilicity andmetabolic resistance of
organic molecules. The introduction of fluorine can confer
greater pharmacokinetic and pharmacodynamic stability and

Figure 5. (a) Simulated annealing omit electron density map of the PFA�MABH complex (cyan, contoured at 3.5σ), in which MABH was omitted
from the structure factor calculation. Atoms are color-coded as follows: C = yellow (C = gray for H381 from the adjacent monomer), O = red, N = blue,
B = green; Mn2+ ions and water molecules are purple and red spheres, respectively. Red and green dashed lines indicate manganese coordination and
hydrogen bond interactions, respectively. (b) Simulated annealing omit electron density map of the PFA�MABH complex (cyan, contoured at 3.5σ), in
which MABH and the Mn2+A-bound water molecule were omitted from the structure factor calculation. The view is zoomed in on the binuclear
manganese cluster and oriented differently from that in (a) to clearly show that the electron density is most consistent with the binding of a trigonal
planar boronic acid moiety and a separate Mn2+A-bound water molecule. Similar electron density characterizes the PFA�FABH complex (data not
shown). Atoms are color-coded as in (a). (c) Simulated annealing omit electron density map of the PFA�FABH complex (cyan, contoured at 3.5σ), in
which FABH was omitted from the structure factor calculation. Atoms are color-coded as in (a), with F = black. (d) Superposition of the PFA�ABH
complex (blue), PFA�MABH complex (red), and PFA�FABH complex (green).
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can also influence binding affinity in that the C�F group of a
fluorinated inhibitor in an enzyme�inhibitor complex can be a
weak hydrogen bond acceptor.

The structures of HAI and PFA complexed with the corre-
sponding inhibitors MABH and FABH reveal that the new R-
substituent of each inhibitor is directed out toward a new region of
the active site not previously identified to interact with bound
inhibitors. In HAI, this region of the active site is in the vicinity of
T136, so we now refer to this previously “uncharted” region of the
protein surface as the “T136 region”. Importantly, the current
work is the first to demonstrate that the arginase active site can
accommodate the binding of an R,R-disubstituted amino acid
without compromising the molecular recognition of the R-amino
and R-carboxylate groups, critical determinants of enzyme�
inhibitor affinity.43 Both C�F groups of FABH accept hydrogen
bonds from active site solvent molecules in the HAI�FABH
complex, but these interactions presumably do not contribute to
enzyme�inhibitor binding affinity.

The residue corresponding to T136 of HAI in PFA is P228, so
the T136 region of HAI and the corresponding “P228 region” of
PFA differ in their three-dimensional contours and polarities.
These regions additionally differ because of the proximity of
H381 and its associated polypeptide chain in the adjacent
monomer, which constricts the P228 region of PFA relative to
the T136 region of HAI. If an R,R-disubstituted amino acid
inhibitor can ultimately be designed to interact with the P228
region of PFA, it may be possible to develop a species-specific
inhibitor of PFA that does not cross-react with HAI. Although a
C�F group of FABH accepts a hydrogen bond fromH381 in the
PFA�FABH complex, this interaction does not enhance inhi-
bitor binding affinity.

It is surprising that while the R-amino and R-carboxylate
groups of MABH and FABH bind similarly within the active sites
of HAI and PFA, both exhibit decreased inhibitory potency in
comparison with ABH (Table 1). Moreover, it is particularly
surprising that while each inhibitor binds with a tetrahedral
boronate anion side chain to HAI, each inhibitor binds to PFA
with a trigonal planar boronic acid side chain. However, neither
MABH nor FABH bind to PFA as substrate analogues because of
a side chain conformation that would be unattainable for sub-
strate L-arginine. This structural feature and interactions between
the newly introduced R-substituent and H381 in an adjacent
subunit presumably contribute to the aberrant inhibitor binding
modes and lower affinities with PFA compared with HAI. While
previous studies56 suggest that PFA may have a significant role in
immune evasion and infection by the parasite P. falciparum, and
PFA inhibition is suggested46 as an adjuvant therapy in the
treatment of malaria patients, the current work demonstrates that
boronic acid analogues of ABH are not particularly effective
against PFA.

The decreased affinity of MABH and FABH in comparison
with the parent inhibitor ABH may be rationalized by analysis of
the crystal structures of their complexes with HAI. Here, all three
inhibitors clearly bind as analogues of the tetrahedral intermedi-
ate and its flanking transition state, and this feature significantly
contributes to high affinity. Given the presence of potential
hydrogen bonding groups in the T136 region of the HAI active
site, it appears that a more polar substituent would be more
favorably accommodated in this region of the active site. Ad-
ditionally, a longer R-substituent might be better suited for
capturing additional binding interactions in the protein land-
scape of T136 and beyond. Indeed, a recent report demonstrates

the success of this particular strategy, with a variety of R-sub-
stituents such as �(CH2)4NH3

+, �(CH2)3OPh, or �(CH2)3-
OPh-p-F yielding racemic ABH derivatives withKi values ranging
from 10�8 to 10�10M against both HAI and human arginase II.57

Future studies will continue the exploration of structure�affinity
relationships for R,R-disubstituted amino acid inhibitors bearing
substituents capable of making favorable interactions in the T136
region, and such studies clearly promise to advance the devel-
opment of arginase inhibitors as possible therapeutic agents.

’CONCLUSIONS

This work reports the design, multistep synthesis, assay, and
structural evaluation of two R,R-disubstituted amino acids,
MABH and FABH, in complex with HAI and PFA. This is the
first study describing the binding of R,R-disubstituted amino
acids to human and parasitic arginases, and X-ray crystal struc-
tures show that the additional R-substituent is readily accom-
modated in each enzyme active site. These structures highlight
new regions of the protein surfaces of HAI and PFA that can be
targeted for additional affinity interactions. Finally, this work
provides the first comparative structural insights on inhibitor
discrimination between a human arginase and a parasitic argi-
nase, which may facilitate the development of species-specific
inhibitors in the search for new arginase-directed drugs.

’EXPERIMENTAL SECTION

Synthesis of r,r-Disubstituted Amino Acids. General
Procedures. All reagents were of at least 95% purity, purchased from
Sigma Aldrich Co. and Fisher Scientific, and used as received. All
solvents were of HPLC grade (Fisher Scientific or Sigma Aldrich Co).
For anhydrous conditions, solvents were freshly distilled under N2

(CH2Cl2 from P2O5, and THF from Na benzophenone). Reactions
were monitored by TLC with Sigma-Aldrich aluminum plates (silica gel
F254, 60 Å to 0.25 mm), visualized by quenching under UV light,
equilibrated in a glass chamber containing iodine, and/or stained with
ninhydrin solution. Flash column chromatography was performed using
Fisher Scientific silica gel 60 (230�400 mesh). High resolution mass
spectrometry (HRMS) was carried out using an instrument from LCT
Premier XE Micromass/Waters MS Technologies. Purities of all
synthesized and tested compounds were greater than 95% based on
HPLC analysis. 1H and 13C NMR spectra were recorded on Bruker
DMX 360 andDRX 500 spectrometers at 360 and 500MHz for 1H, 90.6
and 125.6MHz, respectively, for 13C, 282MHz for 19F, and 128MHz for
11B NMR. Assignments were made based on chemical shifts, signal
intensity, COSY, and HMQC sequences. 1H, 13C, 19F, and 11B NMR
chemical shifts (δ) are reported in ppm relative to the residual solvent
peaks. 1H NMR coupling constants (J) are reported in Hz, and multi-
plicities are denoted as follows: s, singlet; d, doublet; t, triplet; m,
multiplet; bs, broad singlet. 11B NMR spectra are decoupled.
Ethyl 2-N-(Diphenylmethyleneamino)hex-5-enoate (2). A

10% solution of tBuOK (0.9 g, 8.25 mmol) in dry THF was added
dropwise to a 10% THF solution of N-(diphenylmethylene)glycine
ethyl ester (1) (2 g, 7.5 mmol) at�78 �C, with stirring under N2. After
15 min, 4-bromobutene (2.4 mL, 22.5 mmol) in dry THF (5 mL) was
added at �78 �C. After warming to room temperature, the reaction
mixture was stirred for 20 h and then quenched with NH4Cl (20 mL)
and water (5 mL). The resulting immiscible layers were separated, and
the aqueous layer was extracted with CH2Cl2 (4 � 20 mL). The
combined organic extracts were washed (brine), dried (Na2SO4), and
rotoevaporated. Purification by flash column chromatography (hexane/
ethyl acetate gradients) afforded 2 as a light-yellow oil (1.8 g, 75%). 1H
and 13C NMR (CDCl3) spectra confirmed literature data.49



5439 dx.doi.org/10.1021/jm200443b |J. Med. Chem. 2011, 54, 5432–5443

Journal of Medicinal Chemistry ARTICLE

Ethyl2-N-(Diphenylmethyleneamino)-2-methylhex-5-enoate
(3). A solution of 2 (1.8 g, 5.6 mmol) in dry THF (20 mL) was treated
successively with 10% THF solutions of tBuOK and methyl iodide,
respectively (molar ratio 2/tBuOK/CH3I 1:1.1:3). Subsequent workup
and flash column chromatography (hexane/ethyl acetate gradients)
yielded pure 3 as a colorless oil (1.5 g, 80%). 1H NMR (CDCl3): δ
7.63�7.54 (m, 2H, Ph), 7.39�7.22 (m, 6H, Ph), 7.20�7.05 (m, 2H,
Ph), 5.94�5.83 (m, 1H, �HCdCH2), 5.04 (dq, J = 1.6, 17.1, 1H, HA,
�HCdCHAHB), 4.98 (dd, J = 1.9, 10.2, 1H, HB, �HCdCHAHB),
3.85�3.60 (m, 2H, �O�CH2�), 2.40�2.25 (m, 1H, HA, (CH3)C�
CHAHB�CH2�), 2.22�1.94 (m, 3H, HB, HC, HD, (CH3)C�
CHAHB�CHCHD�), 1.41 (s, 3H, (CH3)C�), 1.12 (t, J = 7.1, 3H,
�CH2�CH3).

13C NMR (CDCl3): δ 175 (CO), 166.8 (CdN), 141.5
(Cq, C1-Ph), 139 (�CHdCH2), 137.7 (Cq, C10-Ph), 130.3, 128.9, 128.8,
128.7, 128.2, 128.0 (all from Ph), 114.7 (�CHdCH2), 66.3 (O�C),
60.6 (N�C(CH3)), 42.6 ((CH3)C�CH2�), 28.8 ((CH3)C�), 24.6
((CH3)C�CH2�CH2�), 14.1 (�CH2�CH3). HRMS m/z 336.1960
(calcd for M + H, 336.1963).
Ethyl 2-N-(Diphenylmethyleneamino)-2-methyl-6-(4,4,5,5-

tetramethyl[1,3,2]dioxaborolan-2-yl)hex-5-enoate (5). The
catalyst, amixture of [Ir(cod)Cl]2 (150mg, 0.2mmol) and dppm (172mg,
0.4 mmol), was weighed in the glovebox and dissolved with stirring in dry
CH2Cl2 (10 mL) under N2 at room temperature. Pinacolborane (2.6 mL,
18mmol) and then a solution of 3 (1.5 g, 4.5mmol) in dry CH2Cl2 (5mL)
were added. 1H NMR monitoring showed the disappearance of signals for
the olefinic protons after 18 h, and the reaction mixture was then quenched
with water (5 mL). After separation, the aqueous layer was extracted with
Et2O (4� 10 mL). The combined organic layers were washed with water
(5 mL), dried (Na2SO4), and rotoevaporated. The resulting crude orange
oil was further purified by flash column chromatography (hexane/ethyl
acetate gradients) and yielded 5 as a colorless oil (1.2 g, 60%). 1H NMR
(CDCl3): δ 7.60�7.51 (m, 2H, Ph), 7.40�7.22 (m, 6H, Ph), 7.18�7.08
(m, 2H, Ph), 3.78�3.55 (m, 2H, �O�CH2�), 2.05�1.80 (m, 2H,
(CH3)C�CH2�), 1.52�1.45 (m, 3H, HB, HC, HD, (CH3)C�
CH2�CHAHB�CHCHD�), 1.42�1.35 (bs, 3H, (CH3)C�), 1.25�1.15
(m, 1H, HA, (CH3)C�CH2�CHAHB�CHCHD�), 1.23 (s, 12H,
4CH3 from pinacolboranyl), 1.1 (t, J = 7.1, 3H, CH2�CH3), 0.81 (t,
J = 7.5, 2H,�CH2B).

13CNMR (CDCl3): δ 174.4 (CO), 166.2 (CdN),
141.6 (Cq, C1-Ph), 137.5 (Cq, C10-Ph), 130.2, 129.3, 129.0, 128.9, 128.3,
128.0 (all from Ph), 83.2 (2C, Cq from pinacolboranyl), 66.8 (O�C),
60.5 (N�C(CH3)), 43.2 ((CH3)C�CH2), 27 ((CH3)C�), 25.2 (4C,
4CH3 from pinacolboranyl), 24.9, 24.6 (C(CH3)�CH2�CH2�
CH2�), 14.2 (�CH2�CH3), 11.5 (bs, CH2�B). 11B NMR (CDCl3):
δ 38.2. HRMS m/z 464.2979 (calcd for M + H, 464.2972).
2-Amino-6-borono-2-methylhexanoic Acid (MABH, 7). The

protected derivative 5 (1.2 g, 2.6 mmol) was stirred with 6 N HCl/THF
2:1 (4 h, 70 �C), cooled to room temperature, and extracted with Et2O
(4 � 25 mL) to remove the benzophenone. The aqueous layer was
rotoevaporated to dryness, retaken in 6 N HCl (50 mL), and stirred at
80�90 �C until TLC monitoring (MeOH/CHCl3/NH4OH 8:2:0.5)
revealed complete deprotection (after∼24 h). Rotoevaporation at 40 �C,
followed by flash column chromatography (CHCl3/MeOH/NH4OH
gradients) afforded 7 as a white powder (0.46 g, 93%). 1H NMR (D2O):
δ 1.94�1.87 (m, 1H, HA, (CH3)C�CHAHB�), 1.80�1.65 (m, 1H, HB,
(CH3)C�CHAHB�), 1.47 (s, 3H, (CH3)C�), 1.48�1.32 (m, 3H, HB,
HC, HD, (CH3)C�CH2�CHAHB�CHCHD�), 1.29�1.13 (m, 1H,
(CH3)C�CH2�CHAHB�CHCHD�), 0.79 (t, J = 7.5, 2H, �CH2B).
13C NMR (D2O): δ 177 (CO), 61.6 (N�C(CH3)), 36.9 ((CH3)C�
CH2), 25.9 ((CH3)C�), 23.5, 22.5 ((CH3)C�CH2�CH2�CH2�),
13.9 (bs, CH2�B). 11B NMR (D2O): δ 36.25. HRMS m/z 190.1258
(calcd for M + H, 190.1250).
Ethyl 2-N-(Diphenylmethyleneamino)-2-(difluoromethyl)-

hex-5-enoate (4). A solution of 2 (1.8 g, 5.6 mmol) in dry THF
(10 mL) was cooled to �78 �C and treated with 20% tBuOK/THF

(molar ratio 2/tBuOK 1:1.1), under stirring and N2 purging. After
20 min, chlorodifluoromethane (4.8 g, 55.5 mmol) was added to the
reaction flask via needle. The resulting mixture was stirred at�78 �C (10
min), then at room temperature (45 min), quenched with brine (5 mL),
and extracted with Et2O (4 � 15 mL). The combined organic extracts
were washed (brine), dried (Na2SO4), and rotoevaporated. The resulting
yellow oil was purified (flash column chromatography, hexane/ethyl
acetate gradients) to generate 4 as a colorless oil (1.4 g, 70%). 1H NMR
(CDCl3): δ 7.69�7.05 (m, 10H), 6.17 (t, J = 55, 1H, �CHF2),
5.91�5.70 (m, 1H, �HCdCH2), 5.04 (dq, J = 1.6, 17.1, 1H, HA,
�HCdCHAHB), 4.95 (dd, J = 1.7, 10.2, 1H, HB, �HCdCHAHB),
3.85�3.63 (m, 2H,�O�CH2�), 2.45�2.20 (m, 2H,HA,HB, (CHF2)C�
CHAHB�), 2.18�2.09 (m, 1H, HC, (CHF2)C�CH2�CHCHD),
2.06�1.95 (m, 1H, HD, (CHF2)C�CH2�CHCHD), 1.12 (t, J = 7.1,
3H, �CH2�CH3).

13C NMR (CDCl3): δ 176.6 (CO), 169.8 (CdN),
140.3 (Cq, C1-Ph), 138.5 (�CHdCH2), 136.7 (Cq, C10-Ph), 130.9, 130.3,
129.2, 129.0, 128.5, 128.31, 128.27, 128.1 (all from Ph), 117.6 (t, 1JCF =
250, CHF2), 114.9 (�CHdCH2), 71.1 (bs, C(CHF2)�N), 61.4
(O�C), 32.0 ((CHF2)C�CH2), 28.3 ((CHF2)C�CH2�CH2�),
13.8 (�CH2�CH3).

19F NMR (CDCl3): δ �129.0 (ABX system
8 lines, 2JFF = 271, 2JHF = 56). HRMS m/z 372.1764 (calcd for M +
H, 372.1775).
Ethyl 2-N-(Diphenylmethyleneamino)-2-difluoromethyl-

6-(4,4,5,5-tetramethyl[1,3,2]dioxaborolan-2-yl)hex-5-enoate
(6). A solution of 4 (1.4 g, 4.2 mmol) in dry CH2Cl2 (5 mL) was reacted
with a mixture of [Ir(cod)Cl]2/dppm and pinacolborane following the
same experimental procedure as described for the synthesis of 5. Flash
column chromatography (pentane/Et2O gradients) generated 6 as a
colorless oil (0.95 g, 45%). 1H NMR (CDCl3): δ 7.65�7.11 (m, 10H),
6.16 (t, J = 56, 1H, �CHF2), 3.81�3.65 (m, 2H, �O�CH2�),
2.1�1.80 (m, 2H, HA, HB, (CHF2)C�CHAHB�), 1.60�1.38 (m,
4H, HC, HD, HE, HF, (CHF2)C�CH2�CHCHD�CHEHF�), 1.18 (s,
6H, 2CH3 from pinacolboranyl), 1.16 (s, 6H, 2CH3 from
pinacolboranyl), 1.1 (t, J = 7.1, 3H, CH2�CH3), 0.85�0.70 (m, 2H,
�CH2B).

13CNMR (CDCl3): δ 170.0 (CO), 169.5 (CdN), 140.3 (Cq,
C1-Ph), 136.8 (Cq, C10-Ph), 130.8, 129.1, 129.0, 128.4, 128.2, 128.1 (all
from Ph), 83.1 (2C, Cq from pinacolboranyl), 71.1 (t, 3JCF = 21,
(CHF2)C�), 61.3 (O�C), 32.9 ((CHF2)C�CH2), 26.4 ((CHF2)C�
CH2�CH2�), 25.1 ((CHF2)C�CH2�CH2�CH2�), 25.0 (2CH3

from pinacolboranyl), 24.9 (2CH3 from pinacolboranyl), 13.9
(�CH2�CH3), 11.3 (CH2�B). 11B NMR (CDCl3): δ 32.5. 19F
NMR (CDCl3): δ �129.3 (ABX system, eight lines, 2JFF = 274, 2JHF =
56.5). HRMS m/z 500.2772 (calcd for M + H, 500.2783).
2-Amino-6-borono-2-(difluoromethyl)hexanoicAcid (FABH,

8). Intermediate 6 (0.9 g, 1.8 mmol) was deprotected by the same
experimental protocol utilized for the deprotection of 5. Flash column
chromatography (CHCl3/MeOH/NH4OH/

iPrOH gradients) afforded
8 as a white precipitate (0.37 g, 92%). 1H NMR (D2O): δ 6.19 (t, J = 54,
1H,�CHF2), 1.96�1.88 (m, 1H,HA, (CHF2)C�CHAHB), 1.78�1.68 (m,
1H,HB, (CHF2)C�CHAHB), 1.53�1.30 (m, 3H,HB,HC,HD, (CHF2)C�
CH2�CHAHB�CHCHD�), 1.30�1.08 (m, 1H, (CHF2)C�CH2�
CHAHB�CHCHD�), 0.76 (t, J = 7.5, 2H, �CH2B).

13C NMR (D2O):
δ 171.5 (d, 4JCF = 6.1, CO), 116.0 (t, 1JCF = 246, CHF2), 65.5 (dd,

3JCF =
16.5, 20, (CHF2)C�), 31.2 (d, 4JCF = 3.2, (CHF2)C�CH2), 25.1
((CHF2)C�CH2�CH2�), 23.4 ((CHF2)C�CH2�CH2�CH2�),
13.7 (bs, CH2�B). 11B NMR (D2O): δ 21.6. 19F NMR (D2O): δ
�130.0 (ABX system, eight lines, 2JFF = 278, 2JHF = 54). HRMS m/z
226.1057 (calcd for M + H, 226.1062).
Surface Plasmon Resonance (SPR). The binding affinities of

MABH and FABH to HAI were determined by SPR on a Biacore 3000
instrument according to a previously reported procedure58 except that
all measurements were made at pH 8.5 and inhibitor concentrations
were 0�200 nm for ABH, 0�25 μM for MABH, and 0�500 μM for
FABH. In this measurement, HAI is immobilized on carboxymethylated
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dextran over the gold surface of sensor chip CM5 and the inhibitor is
added to a buffer solution that continuously flows over the sensor
surface. Inhibitor binding to the immobilized enzyme causes a change in
the angle of reflection of polarized light used to interrogate the glass
sensor support. Angular changes are recorded in real time as “response
units” in the sensorgrams shown in Figure 3; these changes are
proportional to the concentration of enzyme-bound inhibitor and thus
allow for real time monitoring of the enzyme�inhibitor interaction as a
function of inhibitor concentration. Dissociation constants are calcu-
lated using a 1:1 Langmuir interaction model.59

Enzyme Inhibition Assay. The inhibition of PFA by MABH and
FABH was analyzed using a colorimetric method,60 as previously
described.40 Briefly, the reaction of urea with R-isonitrosopropiophe-
none was measured at a wavelength of 550 nm using the Envision plate
reader (courtesy of Dr. Scott Diamond, Institute of Medicine and
Engineering, University of Pennsylvania). The arginase reaction was
performed in 50 mM Tris (pH 8.0), 0.5 mM TCEP, 1 mM MnCl2, 0.2
μM protein, 0�100 mM inhibitor, and 20 mM L-arginine for 5�16 min
at 37 �C. Assaymixture and protein were preincubated at 37 �C for 1min
before initiating the reaction. The assay mixture (20 μL) was stopped
with a sulfuric�phosphoric acid/R-isonitrosopropiophenone mixture
(140 μL). Reaction points were developed in a thermocycler (90 �C, 1
h), followed by incubation at 21 �C (15 min). The Ki values for the
racemic mixtures of MABH and FABH were calculated using the
Cheng�Prusoff equation61 with the software Graphpad Prism (2008).
Crystallography: HAI Complexes.Crystals of the HAI�DFMO

and HAI�L-ornithine complexes were prepared by soaking crystals of
unliganded HAI prepared as described42 in 0.1M bis-Tris (pH 6.5), 20%
PEGmonomethyl ether, and 20 mMDFMOor 20 mM L-ornithine for 2
days. Crystals of the HAI�MABH and HAI�FABH complexes were
prepared by cocrystallization in hanging drops at 21 �C. Drops contain-
ing 3 μL of protein solution [3.5 mg/mL HAI, 50 mM bicine (pH 8.5),
2 mMMABH, 100 μMMnCl2] and 3 μL of precipitant solution [0.1 M

HEPES (pH 7.0), 22�28% Jeffamine] were equilibrated against a 1 mL
reservoir of precipitant solution. Crystals appeared overnight and grew
with typical dimensions of 0.5mm� 0.2mm� 0.2mm. All crystals were
cryoprotected in a precipitant solution containing 32% Jeffamine prior
to flash cooling in liquid nitrogen.

X-ray diffraction data from all crystals were collected at GM/CA-
CAT beamline 23-ID-D or NE-CAT beamline 24-ID-C at the Ad-
vanced Photon Source (APS, Argonne, IL). Diffraction intensities
measured from crystals of HAI complexes exhibited symmetry con-
sistent with apparent space group P6 (unit cell parameters a = b = 90.3 Å,
c = 69.3 Å). Intensity data integration and reduction were performed
using the HKL2000 suite of programs.62 Data reduction statistics are
recorded in Table 2. As with crystals of other HAI complexes,38,42

deviations from idealWilson statistics were observed with ÆI2æ/ÆIæ2 = 1.5,
indicating perfect hemihedral twinning.63 The structure of each enzy-
me�ligand complex was solved by molecular replacement using the
program Phaser64 with chain A of unliganded HAI (PDB accession code
2ZAV, less water molecules)42 used as a search probe against twinned
data. In order to calculate electron density maps, structure factor
amplitudes (|Fobs|) derived from twinned data (|Iobs|) were deconvo-
luted into structure factor amplitudes corresponding to twin domains A
and B (|Fobs/A| and |Fobs/B|, respectively) using the structure-based
algorithm of Redinbo and Yeates63 implemented in CNS.65 Electron
density maps were visualized with the graphics software COOT.66 After
initial rigid body refinement with CNS,65 refinement of each complex
was performed against twinned data using PHENIX.67 After water
molecules were located and fit into themap, gradient omitmaps revealed
the bound ligand in the active site of each monomer in the asymmetric
unit. Ligand atoms were refined with full occupancy and exhibited
atomic B factors consistent with the average B-factor calculated for the
entire protein. The quality of each final model was assessed using
PROCHECK.68 Final refinement statistics are recorded in Table 2.

Table 2. X-ray Crystallographic Data Collection and Refinement Statistics

complex

parameter HAI�DFMO HAI�L-Orn HAI�MABH HAI�FABH PFA�MABH PFA�FABH

resolution limit, Å 50�1.70 50�1.43 50�1.60 50�1.70 50�1.90 50�2.0

total/unique reflections 129926/67814 233126/116771 82598/8046 128641/68384 404894/44684 412761/38494

completeness (%) (overall/outer shell) 99.9/100.0 99.8/100.0 98.4/95.6 99.0/98.2 99.9/99.2 99.9/98.7

Rmerge (overall/outer shell)
a 0.101/0.412 0.067/0.640 0.050/0.298 0.148/0.577 0.081/0.444 0.090/0.587

I/σ(I) (overall/outer shell) 11.0/2.7 35.6/2.0 25.1/2.7 11.6/2.3 23.0/3.4 23.6/2.7

Refinement

R/Rfree 0.161/0.202b 0.147/0.185b 0.129/0.163b 0.136/0.178b 0.163/0.182c 0.167/0.183c

protein atomsd 4782 4782 4764 4778 2416 2416

manganese ionsd 4 4 4 4 2 2

ligand atomsd 24 18 28 32 13 15

water moleculesd 345 393 765 760 212 203

rms deviation

bond length, Å 0.005 0.006 0.006 0.006 0.007 0.006

bond angle, deg 1.3 1.4 1.0 1.0 1.1 0.9

dihedral angle, deg 23 23 17 18 13 13

PDB accession code 3GN0 3GMZ 3SJT 3SKK 3SL1 3SL0
a Rmerge = ∑|I� ÆIæ|/∑I, where I is the observed intensity and ÆIæ is the average intensity calculated for replicate data. b Rtwin = ∑|[|Fcalc/A|2 + |Fcalc/B|2]1/2
� |Fobs||/∑|Fobs| for reflections contained in the working set. |Fobs| is the observed structural factor amplitude, and |Fcalc/A| and |Fcalc/B|are the structure
factor amplitudes calculated for twin domains A and B, respectively. Rtwin underestimates the residual error in the model over the two twin-related
reflections by a factor of approximately 0.7. The same expression describes Rtwin/free, calculated for test set reflections excluded from refinement. c R =
∑||Fobs| � |Fcalc||/∑|Fobs|, where |Fobs| and |Fcalc| are the observed and calculated structure factor amplitudes, respectively. The same expression
describes Rfree, calculated for test set reflections excluded from refinement. d Per asymmetric unit.
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Crystallography: Plasmodium falciparum Arginase Com-
plexes. Recombinant PFA was prepared and purified as described, and
crystals of complexes with MABH and FABH were prepared using
conditions similar to those employed in the structure determination of
the PFA�ABH complex.40 Briefly, a 2 μL sitting drop of enzy-
me�inhibitor complex [5 mg/mL PFA, 50 mM Tris (pH 8.0),
200 mM NaCl, 1 mM MnCl2, 1 mM tris(2-carboxyethyl)phosphine
(TCEP), 5 mM inhibitor] was mixed with a 2 μL drop of precipitant
solution [1.2 M sodium/potassium phosphate (pH 8.0)] and equili-
brated against 500 μL of precipitant solution in the reservoir at 21 �C.
Crystals appeared within 1�2 days and were harvested, cryoprotected
in 30% Jeffamine ED-2001, 0.1 M HEPES (pH 7.0), 50 μM inhibitor,
and flash-cooled in liquid nitrogen. Diffraction data were measured on
NE-CAT beamline 24-ID-E at APS. Data collection statistics are
recorded in Table 2.

Data were indexed and merged using HKL2000.62 Molecular re-
placement calculations were performedwith PHASER64 using the atomic
coordinates of PFA less inhibitor and solvent atoms (PDB accession code
3MMR)40 as a search probe for rotation and translation function
calculations. Iterative cycles of refinement and model building were
performed using PHENIX67 and COOT,66 respectively, in order to
improve each structure as guided by Rfree. Refinement included six
defined TLS groups identified by the TLS motion determination
server.69 As also observed in the PFA�ABH complex,40 the N-terminus
was disordered (continuous main chain electron density starts at K22)
and residues G72�N153 in the L2 loop were disordered. The quality of
each final model was assessed using PROCHECK.68 Refinement statis-
tics are recorded in Table 2.

Accession Codes
†Atomic coordinates of human arginase I complexes with
DFMO, L-ornithine, MABH, and FABH have been deposited
in the Protein Data Bank (www.rcsb.org) with accession codes
3GN0, 3GMZ, 3SJT, and 3SKK, respectively; coordinates of
P. falciparum arginase complexes with MABH and FABH have
been deposited with accession codes 3SL1 and 3SL0, respectively.
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